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Abstract

Background.—Group A streptococci (GAS), although usually responsible for mild infections, 

can sometimes spread into normally sterile sites and cause invasive GAS disease (iGAS). 

Because both the risk of iGAS disease and occurrence of outbreaks are elevated within certain 

communities, such as those comprising people who inject drugs (PWID) and people experiencing 

homelessness (PEH), understanding the transmission dynamics of GAS is of major relevance to 

public health.

Methods.—We used a cluster detection tool to scan genomes of 7552 Streptococcus pyogenes 
isolates acquired through the population-based Active Bacterial Core surveillance (ABCs) during 

2015–2018 to identify genomically related clusters representing previously unidentified iGAS 

outbreaks.

Results.—We found that 64.6% of invasive isolates were included within clusters of at least 4 

temporally related isolates. Calculating a cluster odds ratio (COR) for each emm type revealed that 

types vary widely in their propensity to form transmission clusters. By incorporating additional 

epidemiological metadata for each isolate, we found that emm types with a higher proportion of 
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cases occurring among PEH and PWID were associated with higher CORs. Higher CORs were 

also correlated with emm types that are less geographically dispersed.

Conclusions.—Early identification of clusters with implementation of outbreak control 

measures could result in significant reduction of iGAS.

Keywords

invasive disease; outbreaks; Streptococcus pyogenes 

Streptococcus pyogenes, or group A Streptococcus (GAS), is a Gram-positive beta-

hemolytic human pathogen that causes a wide spectrum of diseases that vary markedly 

in severity [1]. Milder disease manifestations include acute pharyngitis and the highly 

contagious skin infection impetigo. Together, these 2 common maladies cause hundreds 

of millions of cases per year globally [2]. Much less frequently, GAS invades normally 

sterile sites to cause severe infections known as invasive GAS disease (iGAS). Bacteremic 

cellulitis and bacteremia without a focus are the most common manifestations of iGAS; 

rarer and more severe syndromes such as necrotizing fasciitis, streptococcal toxic shock, and 

meningitis also occur [3]. Previous work has shown that risk of iGAS is elevated within 

residents of long-term care facilities (LTCFs), people experiencing homelessness (PEH), and 

people who inject drugs (PWID) [4, 5]. Understanding the transmission dynamics of GAS 

as it spreads within a population and especially within these groups is a major public health 

concern.

A key component in tracking the transmission of GAS within a community is being able 

to type each isolate based on specific genomic and phenotypic characteristics. The most 

common way to categorize GAS is the emm genotype-based typing scheme, which identifies 

alleles (types) based on the variability within the 5′ terminal end of the emm virulence 

gene [6]. emm typing has been widely used in elucidating how different strains of GAS 

spread throughout a population. Although emm typing has elucidated the overall dynamics 

of the transmission of major GAS genetic complexes, it lacks the granularity to reliably 

identify outbreaks. Because the more common emm types often have multiple independent 

circulating strains that are widely geographically and temporally interspersed, emm typing 

on its own lacks sufficient resolution for outbreak detection. A more discriminating method 

for identifying outbreaks relies on whole-genome sequencing (WGS) whereby variant 

alterations observed across the entire genome are used to identify highly related strains.

Although the transmission of S pyogenes is local, the patterns of transmission and disease 

dynamics play out on a much larger scale. Being able to recognize these disease trends 

across the United States, especially among invasive infections, is critical for guiding public 

health policy. To that end, the Centers for Disease Control and Prevention (CDC) developed 

the Active Bacterial Core surveillance (ABCs) program as an active laboratory- and 

population-based surveillance system for key invasive bacterial pathogens including GAS 

[3]. The ABCs sites send both a detailed case report form and the bacterial isolate for each 

invasive disease case occurring within the catchment area. Since 2015, the Streptococcus 
Laboratory has performed WGS all GAS isolates acquired through ABCs [7, 8]. By 
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combining the epidemiological and genomic data of each isolate, we provide a unique 

framework to study iGAS spread and host factors that influence transmission.

We aimed to assess (1) the extent to which isolates collected in 2015–2018 from ABCs 

iGAS cases are part of transmission clusters and (2) whether the propensity to cluster varies 

across emm types. Second, we determined whether cases that are occurring in populations 

at higher risk of iGAS, such as PEH, PWID, or residents of LTCFs, are more prone to 

transmission clustering compared with cases from the rest of the population.

METHODS

Isolates

The ABCs conducts active laboratory and population-based surveillance for iGAS 

infections in 10 states (complete states or selected counties), representing more than 

34.4 million persons (https://www.cdc.gov/abcs/reports-findings/survreports/gas18.html). 

The ABCs defines an iGAS case as illness in a surveillance area resident with isolation 

of GAS from a normally sterile site, or from a wound culture if accompanied by necrotizing 

fasciitis or streptococcal toxic shock syndrome. Surveillance staff at sites complete a 

standardized case report form that includes basic demographic characteristics and risk 

factors of infection on all cases, and they coordinate collection and transfer of isolates to 

the CDC’s Streptococcus Laboratory for characterization. All available iGAS isolates from 

cases identified in 2015–2018 (7552 of 8680, 87%) were included.

Whole-Genome Sequencing

Group A streptococci chromosomal deoxyribonucleic acid preparation, library construction, 

and WGS generation for the iGAS isolates acquired through ABCs were performed as 

previously described [9]. The bioinformatics pipeline describing methods for assignments of 

emm types and other parameters has been described [7, 8].

An acceptable Illumina sequencing run required a Phred quality score ≥Q30, V2 > 75%, V3 

> 70%, yield V2 ≥ 6G, and V3 ≥ 10G. Inclusion criteria for genome assemblies specified 

total contigs ≤250 or, if greater than 250, successful emm type and multilocus sequence 

type calls using the Streptococcus Laboratory sequence-based GAS strain characterization 

pipeline [7].

Transmission Cluster Detection

A schematic describing the cluster detection algorithm is provided in the Supplement 

(Supplementary Figure 1). The program begins with an initial filtering step that reads in 

genomic assemblies and calculates their pairwise mash distance using Mash v1.1 [10]. If an 

isolate does not have at least 2 neighbors with a Mash distance of less than 0.00001, then 

that isolate is removed from further analysis. Once the initial filtering step is completed, an 

all-vs-all pairwise single-nucleotide polymorphism (SNP) distance matrix is generated using 

Nucmer from the MUMmer package v3.9.4 [11]. To improve computational efficiency, this 

step of the program is run on a high-performance computing system where the pairwise 

comparisons for each isolate are run as separate jobs. Once all the jobs finish, the values 
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in the SNP distance matrix are transformed using the equation e−(s/2.3)−1, where s is the 

number of SNPs between 2 genomes. The purpose of this transformation is to give more 

closely related genomes a higher weight and to invert the values so that genome pairs with 

fewer SNPs have a higher distance score. The transformed distances are reformatted into an 

adjacency list and then fed into the clustering tool MCL v14–137, which uses the SNP-based 

distance graph to identify transmission clusters by using a Markov clustering algorithm 

[12]. Finally, each isolate belonging to a cluster with a count of at least 4 is annotated 

with the following epidemiological metadata: patient age, ABC surveillance site, culture 

date, LTCF residence status (yes/no), PEH status (yes/no), and past or current injection drug 

use status (yes/no). Due to the strong correlation between PEH and injection drug use, the 

union of these 2 attributes (defined as either PEH or PWID) was also used in this analysis 

and is referenced as PEH/PWID status (yes/no). The cluster detection code used in this 

analysis is publicly available in the GitHub repository (https://github.com/benjamesmetcalf/

gas_clusters_code).

Statistical Analysis

The cluster odds ratio (COR) for each emm type is the number of cluster-associated isolates 

over the number of noncluster isolates referenced against all other emm types. To illustrate, 

if a is the number of cluster isolates for the focal emm type, b is the number of noncluster 

isolates for the focal emm type, c is the total number of cluster isolates for all other emm 
types, and d is the number of noncluster isolates for all other emm types, then COR = 

(ad)/(bc). Cluster odds ratios were calculated for all emm types with at least 10 cases using 

the “epi.2by2” function in the R “epiR” package v2.0.19 [13]. The Haldane-Anscombe 

correction was used when calculating odds ratios for emm types with no cluster-associated 

cases. Correlation between COR and epidemiological host attributes was assessed with the 

Kendall’s tau correlation coefficient and visualized as a scatterplot using the “ggplot2” 

package in R v3.6.1 [13]. To measure the degree to which emm types are sporadically 

emergent and geographically targeted (SEGT), we define a metric called SEGT that uses the 

Simpson’s diversity index to quantify level of surveillance site heterogeneity exhibited by 

each emm type. Lower index values closer to 0 represent emm types with lower geographic 

diversity and a stronger SEGT signal (strong-SEGT), whereas higher diversity scores closer 

to 1 represent endemic types found across surveillance sites indicating a weaker SEGT 

pattern (weak-SEGT). The index was calculated with the “diversity” function in the R 

“vegan” package v2.5.6 using invasive case counts aggregated over emm types for each 

of the 10 GAS surveillance states (California, Colorado, Connecticut, Georgia, Maryland, 

Minnesota, New Mexico, New York, Oregon, and Tennessee).

RESULTS

Large Proportion of Invasive Group A Streptococci Disease Is Cluster-Associated

Based on genomic relatedness, the algorithm identified 332 transmission clusters across 

39 emm types (112 emm subtypes). It is notable that these cluster-associated isolates 

represented 64.6% (n = 4881) of the total number of iGAS isolates available from ABCs 

during 2015–2018 (Supplementary Appendix 2). Transmission clusters had an average size 

of 15 isolates (ranging from 4 to 372 isolates), and the mean duration from first to most 

Metcalf et al. Page 4

J Infect Dis. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/benjamesmetcalf/gas_clusters_code
https://github.com/benjamesmetcalf/gas_clusters_code


recent isolate in a cluster was 836 days (range, 31–1448 days). The average pairwise 

genomic distance for isolates in a cluster ranged from 0.5 to 17.9 SNPs. Weighting the 

average pairwise distance by the size of the cluster, GAS clusters had an average overall 

pairwise distance of 7.7 SNPs (unweighted average was 7.2 SNPs). Cluster-associated 

isolates were from case-patients whose median age was 55 (range, 0–101) years. Across 

all cluster-associated isolates, 7.4% were recovered from LTCF residents, 14.4% from PEH, 

17.1% from PWID, 24.6% from PEH/PWID, and 68.1% from case-patients with none of 

these 3 risk factors. The impact of clustering on the invasive disease burden within these 

communities was substantial with cluster-associated isolates accounting for 88.1%, 81.1%, 

and 73.0% of total cases among PEH, PWID, and residents of LTCF, respectively. Patients 

living in LTCFs and PEH/PWID both had higher odds of being associated with cluster 

transmission. Residents of LTCFs were 1.51 times (95% confidence interval [CI], 1.23–1.86) 

more likely to be cluster-associated than individuals not residing in LTCF, whereas PEH/

PWID were 3.22 times (95% CI, 2.79–3.73) more likely to be linked to a transmission 

cluster versus non-PEH/PWID.

Clusters that contained at least 1 PEH/PWID case had, on average, 32.0% of their cases 

comprising PEH/PWID isolates, whereas clusters that contained at least 1 LTCF case had, 

on average, 7.8% of their cases representing LTCF isolates. The relatively low percentages 

for both groups reveal that clusters that included LTCF residents and PEH/PWID can also 

spread into the broader general population as well.

emm Types With a Higher Proportion of People Experiencing Homelessness and People 
Who Inject Drugs Are Associated With a Higher Cluster Odds Ratios

Comparing the proportion of cluster-associated isolates from total invasive cases across emm 
types suggests they diverge widely in their predisposition to cluster (Figure 1). To quantify 

clustering propensity across GAS lineages, we calculated a COR for all cluster-associated 

emm types (Table 1) where the cluster odds of a focal emm type was referenced against the 

cluster odds of all other emm types. The COR analysis confirms that emm types vary widely 

in their tendency to form clusters. Certain emm types (eg, 60 and 82) were much more likely 

to generate clusters compared with background, whereas other emm types (eg, 87 and 28) 

had a much lower clustering propensity.

The wide distribution in COR prompted the question of whether there were underlying 

features of emm types that correlated with this variation in clustering propensity. In 

particular, we wanted to assess whether LTCF, PEH, or PWID status of the host impacted 

the propensity of an emm type to form transmission clusters. For each type, we calculated 

the percentage of cases that were isolated from persons experiencing homelessness or 

individuals who inject drugs and percentage of cases from LTCF residents (Table 1). As 

shown in Figure 2, emm types with a higher proportion of cases from PEH or PWID were 

positively correlated with COR (Kendall tau = 0.47, P = 1.51 × 10−5) and thus had a higher 

propensity to generate transmission clusters. Cluster-associated isolates from strong-SEGT 

emm types were more likely to comprise PEH or PWID (Kendall tau = −0.36, P = .0013) as 

well. In contrast, the percentage of LTCF residence did not have any significant association 

with emm type COR.
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We were also interested in determining whether emm types that were unevenly distributed 

across our sampling sites had a higher propensity to form clusters: the expectation being that 

the geographic patchiness of these types was a function of rapid community transmission. To 

quantify the amount of surveillance site heterogeneity within each emm type, we calculated 

the SEGT index using invasive counts aggregated by geographic site (Supplementary Table 

1). The SEGT diversity metric is represented in Figure 2 as the datapoint color gradient, 

which ranges from dark blue (low diversity and strong-SEGT) to light blue (high diversity 

and weak-SEGT). As hypothesized, an inverse correlation was observed between site 

diversity and COR (Kendall tau = −0.30, P = .0078) where emm types with higher CORs 

were less likely to be geographically spread across surveillance sites.

The clustering algorithm used in this analysis, MCL, did not require a threshold distance 

for group designation. This allowed for identification of longer duration clusters because 

average pairwise distance between outbreak isolates will grow over time. However, without 

a distance cutoff, some clusters had a relatively high average distance that could reflect 

unlinked community transmission. Thus, it is reasonable to ask whether the associations 

among COR, PEH/PWID, and the SEGT metric hold if we restrict the analysis to 

transmission clusters with an average pairwise distance below a certain threshold. Using 

an average pairwise distance cutoff of less than or equal 10 SNPs, we identified 266 

transmission clusters, 66 fewer than without the constraint, but the significant associations 

between COR and PEH/PWID (Kendall tau = 0.54, P = 7.6 × 10−7), SEGT and PEH/PWID 

(Kendall tau = −0.35, P = .002), and SEGT and COR (Kendall tau = −0.34, P = .002) 

remained.

DISCUSSION

The large proportion of cluster-associated isolates identified through population-based 

surveillance suggests that cluster transmission within the community plays a major role 

in iGAS epidemiology. In previous work, Turner et al [14] performed a retrospective cohort 

study of 93 patients and identified possible instances of cryptic community transmission. 

In their investigation, they found 3 clusters, 2 clusters of emm1 (2 and 3 isolates each), 

and a third 4-isolate cluster of emm3 in which the patients did not share any identifiable 

links in healthcare settings. Our results suggest that cluster transmission might be the major 

driver of iGAS illnesses at the population level. The extensive clustering behavior of iGAS 

of almost all emm types shown in this analysis likely stems from the extremely effective 

transmission of noninvasive GAS infections. It has been observed that there is a broad 

overlap between strains that are predominant in pediatric pharyngitis and impetigo and 

strains causing invasive disease within a given period [15–17].

This investigation also found that strong-SEGT emm types were more likely to be associated 

with iGAS clusters, and these clusters were more likely to have isolates from case-patients 

who were PEH/PWID. Several studies have documented outbreaks of strong-SEGT emm 
types among PEH and PWID [18–23]. For example, a study performed at a hospital in the 

United Kingdom [20] compared the emm type distributions between PWID treated for GAS 

bacteremia and controls who do not use drugs. Their analysis revealed that although emm 
types 1 and 89 were commonly found in controls, iGAS cases among PWID were associated 
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with emm types 82 and 83, which were infrequent causes of invasive disease in England and 

Wales [19]. As others have noted [24], we suspect that these quickly emergent iGAS clusters 

among populations of younger to middle-aged adults experiencing homelessness and who 

inject drugs are reflective of noninvasive skin infection reservoirs. Inadequate hygiene, 

overcrowded living conditions within shelters, and injection drug use could contribute to 

iGAS cases originating from skin carriage or infection.

The mechanism underlying the clustering of strong-SEGT emm types and their association 

with certain communities may be explained, in part, by their relative inability to cause 

invasive disease in individuals without these risk factors. By virtue of their prevalence, it is 

possible that most adults will have been exposed to, and gained some immune protection 

from, common widely disseminated emm types (eg emm1, emm89, emm12, emm28). 

Thus, although they can cause invasive transmission clusters, spreading within a healthy 

population will most often lead to mild infections with only sporadic cases of invasive 

disease, resulting in a lower cluster odds ratio. Alternatively, the transmission cluster 

analysis suggests that strong-SEGT invasive emm types are not transmitted efficiently within 

an immunologically naive healthy population and, instead, mostly spread within networks 

of individuals who have risk factors and may have had little previous exposure. Their lack 

of previous exposure in conjunction with certain risk factors such as crowding, sleeping 

outdoors, and upper extremity skin breakdown create an environment in which strong-SEGT 

emm types can progress rapidly and cause serious disease [22]. It is possible that once the 

susceptible host population within this network is depleted, the strain is cleared from the 

community resulting in strong-SEGT emm types with disproportionately higher CORs.

The experimental 30-valent GAS vaccine would target broadly distributed, common emm 
types, including emm1, emm3, emm28, and emm89, which have large pediatric pharyngitis 

reservoirs [7] and have been consistently predominant within ABCs for the past 15 years. 

The reservoir for iGAS cases from these common, broadly distributed emm types is thought 

to be children with pharyngitis or asymptomatic GAS carriage. Thus, by preventing pediatric 

pharyngitis, the vaccine might be expected to reduce iGAS among nonvaccinated groups 

within the United States, similar to the reductions in invasive pneumococcal disease seen 

among adults after introduction of pneumococcal conjugate vaccines in young children [25]. 

This experimental GAS vaccine, in addition to targeting types that have been predominant 

during the past few decades, also targets several sporadically emergent types such as 

emm49, emm82, and emm92 that disproportionally affect PWID and PEH. It is conceivable 

that future vaccination policy could include recommendations for implementation strategies 

for these individuals at disproportionate risk of invasive GAS.

CONCLUSIONS

In this analysis, we used a cluster detection algorithm to find iGAS outbreaks circulating 

within ABCs catchment areas using genomic sequence data from isolates acquired from 

2015 through 2018. This study found that a large proportion of iGAS isolates were cluster-

associated with 65% belonging to a genomically related group of at least 4 isolates. In 

addition, we found that emm types that had a higher proportion of PEH/PWID or were more 

sporadically emergent and geographically targeted were positively correlated with COR. 
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Given that 25% of cluster-associated isolates were recovered from PEH/PWID (accounting 

for 83% of total PEH/PWID cases), a significant reduction of iGAS could be achieved 

if these transmission clusters were identified early and control efforts were undertaken to 

limit outbreak progression. Strategies that are effective in controlling outbreaks of GAS 

among PEH and PWID are needed and could include infection prevention and control 

measures, antibiotics, and other decolonization measures that can be implemented within 

facilities such as homeless shelters and facilities serving these populations and within the 

broader community. In addition, a GAS vaccine could provide critical outbreak control when 

transmission is occurring within communities of PEH and PWID.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Proportion of cluster-associated isolates from total invasive cases varies across emm types. 

The stacked bar chart represents emm types that contain at least 10 invasive isolates 

acquired through the Centers for Disease Control and Prevention Active Bacterial Core 

surveillance program. The graph is ordered by total invasive cases, and each bar comprises 2 

categories: cluster-associated (blue) and noncluster-associated isolates (red). The proportion 

of cluster-associated cases diverges widely across emm types: some types, such as emm49, 

are primarily clustered, whereas others (ie, emm28) contain mostly nonclustered isolates.
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Figure 2. 
Correlation between cluster odds ratio and percentage of people experiencing homelessness 

(PEH) or people who inject drugs (PWID). Plot of the log10 cluster odds ratio against 

the percentage of PEH or PWID for each emm type reveals a positive correlation in 

which emm types with a higher proportion of PEH and PWID have a higher propensity 

to form transmission clusters. The strength of this correlation was assessed using the 

Kendall correlation coefficient and was found to have a tau value of 0.47 (P value = 1.51 × 

10−5). The datapoint color gradient represents the sporadically emergent and geographically 

targeted (SEGT) index value for surveillance site assortment across emm types. A darker 

color indicates the emm type was found across fewer surveillance sites (strong-SEGT), 

whereas a lighter color indicates a larger geographic spread (weak-SEGT). An inverse 

correlation was identified between site diversity and cluster odds ratio (tau = −0.30, P = 

.0078). To provide context representative higher COR (emm60, emm92) and lower COR 

(emm28, emm89), emm types are labeled on the graph.
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